

IEEE International Joint Conference on Biometrics

GaitRef: Gait Recognition with Refined Sequential Skeletons

Haidong Zhu*, Wanrong Zheng*, Zhaoheng Zheng and Ram Nevatia University of Southern California

IEEE International Joint Conference on Biometrics (IJCB) 2023

University of Southern California

Task Definition

- Gait Recognition:
 - Identify individuals based on their walking patterns
 - Gait can be observed at distance and does not require active cooperation of the subject

Background

- Person ID needs to work with variations in pose, clothing, illumination and other variations
- Silhouettes and skeletons have been used in many recent methods
 - Silhouettes: Sensitive to clothing and carried objects
 - Skeletons: Rich information but have jitter with noisy frames
- RGB appearance can be also provide helpful features but many public datasets do not release RGB videos due to privacy issues
 - We do not use RGB videos for this work

Motivation and Approach

- Skeletons and silhouette describe the same sequence
- Combining the two modalities should help overcome some limitations of each (GaitMix in our design)
- We can use silhouettes to correct skeletons as silhouettes seem to have less temporal noise (GaitRef in our design)

Methods Overview

University of Southern California

Methods Overview

- GaitMix
 - Fuse two modalities as a baseline approach

Methods Overview

- GaitRef
 - Refine the skeletons with temporal consistency from silhouettes

- GaitMix
 - Combine silhouette and skeleton features for identification
 - Three encoders for extracting and aggregating features
 - Skeleton encoder: ST-GCN^[1]
 - Silhouette encoder: GaitGL^[2] and SMPLGait^[3] (for Gait3D only)
 - Apply SOTA methods as encoders for
- Identity encoder: Part-based FC^[4] layers

[2] Lin, Beibei, et al. "Gait recognition via effective global-local feature representation and local temporal aggregation." *ICCV* 2021.
[3] Zheng, Jinkai, et al. "Gait recognition in the wild with dense 3d representations and a benchmark." *CVPR* 2022.
[4] Chao, Hanqing, et al. "Gaitset: Regarding gait as a set for cross-view gait recognition." *AAAI* 2019.

- GaitRef
 - Refine skeleton representation with temporal consistency from silhouettes, and fuse the refined skeleton for identification
 - An additional "decoder" added to GaitMix
 - Skeleton encoder: ST-GCN [1]
 - Silhouette encoder: SMPLGait (for Gait3D only) or GaitGL
 - Identity encoder: Part-based FC layers
 - <u>Skeleton correction decoder: Reversed ST-GCN</u>
 - <u>Reversed stgcn is of the same structure st-gcn but with</u>

<u>channel size reducing</u>

- Skeleton correction network
 - Refine skeletons with temporal information from silhouettes
 - Inputs: Per-frame input: skeletons and encoded skeleton features Video-level input: silhouette and averaged skeleton features

- Skeleton correction network
 - Output: Per-frame joint correction, will be added on original skeleton
 - Alignment between input and output skeletons
 - Re-use the same skeleton encoder to force them in the same distribution as the encoder input

Experiment Datasets (1 and 2)

- CASIA-B:
 - 124 subjects, 74 for training and 50 for inference
 - 3 different cases 6 segments for normal walking (NM), 2 for bag carrying (BG) and 2 for different clothing (CL)
 - Use first 4 NM videos as galleries and remaining as probes
- OUMVLP:
 - 10307 subjects with 28 videos for each subject
 - 5153 subjects for training and 5154 for inference
 - All sequences are NM

Experiment Datasets (3 and 4)

- Gait3D*
 - 4,000 identities with 25,309 sequences
 - 3,000 identities for training and 1,000 for inference
- GREW^{*}
 - 26,345 identities with 128,671 sequences.
 - 20,000 identities for training, 345 identities for validation, and the remaining 6,000 for inference

* Dataset collected in the wild.

- Rank-1 accuracies on CASIA-B (left) and OU-MVLP (right)

Method	NM	BG	CL
GaitGL	97.3	94.4	83.5
CSTL	97.8	93.6	84.2
ModelGait	97.9	93.1	77.6
GaitMix	97.7	95.2	85.8
GaitRef	98.1	95.9	88.0

Method	Accuracy	
GLN	89.2	
GaitGL	89.6	
CSTL	90.2	
GaitMix	89.9	
GaitRef	90.2	

- Results on Gait3D (left) and GREW (right)

Method	Rank 1	Rank 5	mAP	mINP
GaitGL	29.70	48.50	22.29	13.26
OpenGait	42.90	63.90	35.19	20.83
CSTL	11.70	19.20	5.59	2.59
SMPLGait*	46.30	64.50	37.16	22.23
GaitMix	45.80	65.60	36.74	22.09
GaitRef	49.00	69.30	40.69	25.26

Method	Rank 1	Rank 5	Rank 10	Rank 20
GaitSet	46.3	63.6	70.3	76.8
GaitPart	44.0	60.7	67.4	73.5
CSTL	50.6	65.9	71.9	76.9
GaitGL	51.4	67.5	72.8	77.3
GaitMix	52.4	67.4	72.9	77.2
GaitRef	53.0	67.9	73.0	77.5

* SMPLGait has 3-D body shape as input.

- Visualization of corrected skeletons compared with its input frames
 - Two examples with the order of input skeleton nearby silhouettes corrected skeletons
 - Even the corrected skeletons are not perfect, their prediction is still correct while the original skeleton leads to wrong prediction

- Ablation results on different encoder combination
 - Other skeleton networks, such as MS-G3D, can show further improvements, but they come with heavier time consumption.
 - The refinement network works better than smoothing networks.

Methods	Encoder	Decoder	NM	CL	BG
GaitMix	ST-GCN	N/A	97.7	95.2	85.8
GaitMix	MS-G3D	N/A	98.0	9 <mark>5.</mark> 5	86.4
GaitRef	ST-GCN	ST-GCN	98.1	95.9	88.0
GaitRef	ST-GCN	MS-G3D	98.1	95.7	88.5
GaitRef	MS-G3D	ST-GCN	98.1	95.9	88.3
GaitMix	Average Smoothing		97.6	95.0	85.6
GaitMix	Gaussian Smoothing SmoothNet [39]		97.7	95.2	85.9
GaitMix			97.4	94.4	83.8

Conclusions and Future Directions

- Demonstrated the effectiveness of combining silhouettes and skeletons
- Demonstrated use of silhouette sequence to improve skeletons
- Future Directions
 - Combine with other modalities (such as 3D shape)
 - Use of appearance features as in ReID methods
 - Above require access to RGB videos which are available for real applications but not in many public datasets
 - Face ID datasets do provide images, gait may need to do the same

Thank you!

University of Southern California