

- objects, and clothing, make the task challenging, while skeletons are usually noisy with jitters.
- We combine silhouette and skeletons, and use the temporal consistency of silhouette to refine skeletons for gait recognition. We show state-of-the art methods on multiple datasets.

• We propose two methods for combining silhouette and skeletons in a video sequenc.

- Average of skeleton features F_J^P
 Silhouette features F_S
 Model output joint correction
 Joint modification per frame ΔJ_t
 Added on skeleton of each frame
 The skeleton encoder after the correction
- The skeleton encoder after the correction network is shared with original encoder
 Ensure the corrected skeletons are in the same domain as input skeletons.

DATASETS

- CASIA-B:
- 124 subjects with 110 videos for each subject.
- OUMVLP
- 10,307 subjects with normal walking.
- Gait3D

Method	Rank 1	Rank 5	Rank 10	Rank 20
GaitSet	46.3	63.6	70.3	76.8
GaitPart	44.0	60.7	67.4	73.5
CSTL	50.6	65.9	71.9	76.9
GaitGL	51.4	67.5	72.8	77.3
GaitMix	52.4	67.4	72.9	77.2
GaitRef	53.0	67.9	73.0	77.5

CORRECTED SKELETONS

• A successful and a failure example

METHODOLOGY

• GaitMix

- Aggregates features of silhouette and skeleton together for identification.
- End-to-end training, works as a baseline.
 GaitRef
 - Refines skeleton sequence with temporal information encoded from silhouettes.
 - Aggregates features of refined skeletons with silhouette features for identification.
- End-to-end training for correction network and other feature encoders.
- For encoders and decoders we used:
 - Silhoeutte encoder we use different
 encoders based on our datasets. We use
 SMPLGait for Gait3D and GaitGL for
 other datasets.
 - Skeleton encoder ST-GCN.
 - Skeleton correction decoder ST-GCN.

- \circ 4,000 identities with 25,309 sequences.
- Dataset for in-the-wild case.
- GREW
 - 26,345 identities with 128,671 sequences.
 Dataset for in-the-wild case.

RESULTS

• CASIA-B (Rank-1 accuracy):

Method	NM	BG	CL
GaitGL	97.3	94.4	83.5
CSTL	97.8	93.6	84.2
ModelGait	97.9	93.1	77.6
GaitMix	97.7	95.2	85.8
GaitRef	98.1	95.9	88.0

OUMVLP (Rank-1 accuracy 64×44).

- From left to right, we have original skeletons, silhouette of the nearby timestamp and corrected skeletons from skeleton correction network.
- For both cases, the ID prediction is correct after the skeleton correction, while the original prediction is wrong with its baseline.

REFERENCE

[1] Chao, Hanqing, Yiwei He, Junping Zhang, and Jianfeng Feng. "Gaitset: Regarding gait as a set for cross-view gait recognition." *AAAI. 2019.*

[2] Fan, Chao, Yunjie Peng, Chunshui Cao, Xu Liu, Saihui Hou, Jiannan Chi, Yongzhen Huang, Qing Li, and Zhiqiang He. "Gaitpart: Temporal part-based model for gait recognition." *CVPR 2020.*

[3] Hou, Saihui, Chunshui Cao, Xu Liu, and Yongzhen Huang.
"Gait lateral network: Learning discriminative and compact representations for gait recognition." *ECCV 2020*.
[4] Lin, Beibei, Shunli Zhang, and Xin Yu. "Gait recognition via effective global-local feature representation and local temporal aggregation." *ICCV 2021*.
[5] Huang, Xiaohu, Duowang Zhu, Hao Wang, Xinggang Wang, Bo Yang, Botao He, Wenyu Liu, and Bin Feng.
"Context-sensitive temporal feature learning for gait recognition." *ICCV 2021*.
[6] Li, Xiang, Yasushi Makihara, Chi Xu, Yasushi Yagi, Shiqi Yu, and Mingwu Ren. "End-to-end model-based gait recognition." *ACCV 2020*.

L =	$\lambda_1 L_{triplet}$	$t + \lambda_2 L_{cls}$
	- · · · · · · · · · · · · · · · · · · ·	

• $OOWVLP$ (Ralik-1 accuracy, 04 x 44).				
Method	GLN	GaitGL	MvModelG.	
Accuracy	89.2	89.6	89.7	
Method	CSTL	GaitMix	GaitRef	
Accuracy	90.2	89.9	90.2	