

ShARc: Shape and Appearance Recognition for Person Identification In-the-wild

Haidong Zhu, Wanrong Zheng, Zhaoheng Zheng and Ram Nevatia University of Southern California

IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2024 Waikoloa, Hawaii

Task Definition

- Person identification in-the-wild:
 - Recognize a person's identity with a period of video

Zheng, Liang, et al. "Mars: A video benchmark for large-scale person reidentification." *ECCV*, 2016.

Challenges and Motivation

- Challenges
 - Different activities and outfits
 - A single modality can handle some of the cases, but not all of them
- Motivation
 - We separate the recognition to pose/ shape with appearance, combining strengths from different modalities

Method Overview

- Two branch design for shape and appearance recognition
 - Appearance branch appearance of the frames in the video
 - Shape and pose branch gait motion and body shape recognition
- Predicted scores are aggregated after two branches

Methods

- Appearance-based recognition (AAE)
 - Attention-based aggregation for one and two consecutive frames ^[1]
 - Averaging of the appearance for all the frames in the video

[1] Yingquan Wang, et al. "Pyramid spatial-temporal aggregation for videobased person re-identification." In ICCV, pp. 12026-12035. 2021.

Methods

- Pose and shape based recognition (PSE)
 - Three encoders for silhouettes, 3-D body shape and skeletons
 - Silhouettes and body shape are framewise combined
 - Skeletons are combined after temporal pooling

Experiments and Results

- Datasets:
 - CCVID
 - 75 IDs for training, 151 for inference
 - MEVID
 - 104 IDs for training, 54 for inference
 - BRIAR
 - 407 IDs for training, 642 for inference
- Metrics
 - Accuracy for all three and mAP for MEVID and CCVID

Performance on CCVID

	General		Clothes Changes	
Method	Rank 1	mAP	Rank 1	mAP
GaitNet	62.6	56.5	57.7	49.0
GaitSet	81.9	79.2	71.0	62.1
CAL	82.6	81.3	81.7	79.6
ShARc	89.8	90.2	84.7	85.2

Performance on MEVID and BRIAR

	MEVID	
Method	Rank 1	Rank 20
PSTA	46.2	77.8
ARGL	48.4	77.9
Attn-CL	42.1	73.1
Attn-CL+RR	46.5	71.8
CAL	52.5	80.7
ShARc	59.5	82.9

1 (DI IID

BRIAR

Rank 1	Rank 20
15.6	45.6
17.7	50.2
33.6	67.3
27.6	61.8
34.9	71.4
41.1	83.0
	Rank 1 15.6 17.7 33.6 27.6 34.9 41.1

Attention Visualization

Visualization of attention produced by the model for different activities

Walking

-

Standing

Thank you!

