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Task Definition

- Person identification in-the-wild:
: Recognize a person’s identity with a period of video
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Zheng, Liang, et al. "Mars: A video
benchmark for large-scale person re-
identification." ECCV, 2016.
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Challenges and Motivation

- Challenges
- Diftferent activities and outfits
- A single modality can handle some of
the cases, but not all of them
- Motivation
- We separate the recognition to pose/
shape with appearance, combining
strengths from different modalities
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Method Overview

- Two branch design for shape and appearance recognition

- Appearance branch - appearance of the frames in the video

- Shape and pose branch - gait motion and body shape recognition
- Predicted scores are aggregated after two branches
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Methods

- Appearance-based recognition (AAE)
- Attention-based aggregation for one and two consecutive frames [1]
- Averaging of the appearance for all the frames in the video
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[1] Yingquan Wang, et al. "Pyramid spatial-temporal aggregation for video-
based person re-identification." In ICCV, pp. 12026-12035. 2021.
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Methods

- Pose and shape based recognition (PSE)
- Three encoders for silhouettes, 3-D body shape and skeletons

- Silhouettes and body shape are framewise combined
- Skeletons are combined after temporal poohng
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Experiments and Results

- Datasets:
- CCVID
- 75 IDs for training, 151 for inference
- MEVID
- 104 IDs for training, 54 for inference
- BRIAR
- 407 IDs for training, 642 for inference
- Metrics
- Accuracy for all three and mAP for MEVID and CCVID
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Performance on CCVID

General Clothes Changes

Method Rank 1 mAP Rank 1 mAP
GaitNet 62.6 56.5 57.7 49.0
GaitSet 81.9 79.2 71.0 62.1
CAL 82.6 81.3 81.7 79.6
ShARc 89.8 90.2 84.7 85.2

USCVlterbl

School of Eng ng University of Southern California




Performance on MEVID and BRIAR

MEVID BRIAR

Method Rank 1 Rank 20 Method Rank 1 Rank 20
PSTA 46.2 77.8 GaitGL 15.6 45.6
ARGL 48.4 77.9 GaitRef 17.7 50.2
Attn-CL 421 73.1 PSTA 33.6 67.3
Attn-CL+RR 46.5 71.8 Attn-CL+RR 27.6 61.8
CAL 52.5 80.7 CAL 34.9 71.4
ShARc 59.5 82.9 ShARc 411 83.0
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Attention Visualization

- Visualization of attention produced by the model for different activities
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Thank you!
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