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Abstract

Breakthrough progress in vision-based nav-
igation through unknown environments has
been achieved by using multimodal large lan-
guage models (MLLMs). These models can
plan a sequence of motions by evaluating the
current view at each time step against the
task and goal given to the agent. However,
current zero-shot Vision-and-Language Nav-
igation (VLN) agents powered by MLLMs
still tend to drift off course, halt prematurely,
and achieve low overall success rates. We
propose Three-Step Nav to counteract these
failures with a three-view protocol: First,
”look forward” to extract global landmarks
and sketch a coarse plan. Then, ”look now”
to align the current visual observation with
the next sub-goal for fine-grained guidance.
Finally, ”look backward” audits the entire
trajectory to correct accumulated drift be-
fore stopping. Requiring no gradient up-
dates or task-specific fine-tuning, our plan-
ner drops into existing VLN pipelines with
minimal overhead. Three-Step Nav achieves
state-of-the-art zero-shot performance on the
R2R-CE and RxR-CE dataset.

1 Introduction

In the Vision-and-Language Navigation (VLN) (An-
derson et al., 2018; Gu et al., 2022; Wang et al., 2023a;
Li et al., 2024) task, embodied agents are required to
navigate to an unseen destination following a series of
natural language instructions. Early studies (An et al.,
2024; Zhou et al., 2024a) simplified the task by ground-
ing navigation in discrete graphs, where the agent se-

Figure 1: (a) Prior LLM-core planners rely only on
the current RGB-D view and textual action history,
often misjudging progress and getting distracted by
irrelevant objects. In contrast, (b) our Hierarchical
Global–Local Planner mitigates this by first decom-
posing instructions into sub-instructions for a global
plan, then locally grounding each sub-instruction, and
finally verifying completed sub-instructions against
the global trajectory—yielding more robust zero-shot
navigation.

lects between predefined viewpoints and edges depend-
ing on RGB-D sensory inputs. Although effective for
benchmarking, this abstraction neglects the low-level
dynamics of real-world robotics, such as continuous
motion, partial observability, and collision risks. To
bridge this gap, the community has introduced VLN
in Continuous Environments (VLN-CE) (Krantz et al.,
2020), which eliminates the dependence on connectiv-
ity graphs and instead equips agents with egocentric



sensors and low-level actions. This setting is sub-
stantially more challenging than discrete graph-based
VLN, as it requires reasoning over open spaces, han-
dling unforeseen obstacles, and maintaining progress
without predefined navigation graphs. Building agents
that can solve VLN-CE reliably represents a critical
step toward general-purpose embodied AI, enabling
real-world applications such as home robotics, assis-
tive navigation, and search and rescue operations.

Meanwhile, Multimodal Large Language Models
(MLLMs) have demonstrated strong zero-shot abili-
ties in vision-language tasks (Zhou et al., 2024b; Long
et al., 2024; Chen et al., 2024). Their broad world
knowledge and flexible reasoning suggest a new path
for VLN: treat navigation as an iterative decision-
making dialogue with a powerful but generic model,
rather than training a bespoke policy from scratch.
However, directly requiring an MLLM faces two key
challenges in continuous VLN: As shown in Fig. 1 (a),
instructions can span dozens of steps; the agent must
balance global route planning with local actuation, yet
commodity MLLMs reason over a limited context win-
dow. Moreover, in continuous space, small heading or
position errors quickly compound. The agent needs
principled mechanisms to detect mistakes and recover
without explicit supervision.

To address these issues, we present Three-Step Nav,
a hierarchical global–local framework that leverages
MLLMs for zero-shot VLN in continuous 3-D environ-
ments, differing from prior MLLM-based VLN agents
by coupling global planning with trajectory-level ver-
ification. The agent alternates a global–local–global
reasoning loop: (i) looking forward to outline upcom-
ing sub-instructions, (ii) looking now to ground the
current sub-goal in live visual observations, and (iii)
looking back to verify past progress and adjust future
plans. Within this loop, we introduce an adaptive
judge module that endows the agent with four meta-
skills - stay, continue, backtrack, and look-around -
allowing dynamic self-correction when uncertainty is
detected.

Compared with prior LLM-core planners, our hier-
archical global–local design achieves state-of-the-art
zero-shot success rates R2R-CE (Ku et al., 2020) and
RxR-CE (Krantz et al., 2020) datasets, while also re-
ducing navigation error by 15% and improving SPL by
12% on the validation-unseen splits of R2R-CE, indi-
cating that our global progress check and trajectory-
level auditing effectively mitigate distraction and cu-
mulative drift in continuous environments. The goals
of this work can be summarized as follows:

• We propose Three-Step Nav, a novel framework
that alternates global–local–global reasoning with

an MLLM, enabling zero-shot VLN in continu-
ous 3-D environments while preserving long-range
context and requiring no task-specific fine-tuning.
Moreover, the framework is lightweight and mod-
ular, making it easy to plug into other LLM-core
planning pipelines.

• We introduce a Hierarchical Global–Local Plan-
ner that dynamically switches views: after com-
pleting local chain-of-thought reasoning to reach a
specific sub-goal, the agent transitions to a global
check that examines the trajectory and verifies
finished sub-instructions. This alternating loop
between fine-grained execution and trajectory-
level auditing helps the MLLM reason over spa-
tial structure and exploration history, suppressing
distraction and cumulative drift.

• We design an adaptive judge module equipped
with meta-skills to decide whether to stay, con-
tinue, backtrack, or look around, allowing the
agent to self-correct under uncertainty and main-
tain robust navigation even in ambiguous environ-
ments.

2 Related Work

Vision-and-Language Navigation The VLN task
(Anderson et al., 2018) requires embodied agents to
follow natural language instructions and visual ob-
servations to reach goal locations in novel environ-
ments. Early research in the discrete VLN setting,
typically built on the Matterport3D simulator (Chang
et al., 2017), modeled navigation as sequential decision
making on a predefined connectivity graph. To en-
hance performance, methods introduced various struc-
tural priors: DUET (Chen et al., 2022) and ETPNav
(An et al., 2024) leveraged topological abstractions to
capture global spatial relations, BEVBert (An et al.,
2023) constructed semantic bird’s-eye view represen-
tations, and Wang et al. (2023b) designed egocentric
grid-based memory for long-horizon reasoning. Be-
yond graph-based or memory-driven methods, VLN-
Video (Li et al., 2024) utilized driving videos to extend
VLN into outdoor navigation, and Zhu et al. (2023) in-
troduced knowledge-driven imagination of unseen lay-
outs. Collectively, these approaches advanced dis-
crete VLN by enriching agents’ spatial reasoning and
grounding, laying the foundation for more realistic
navigation formulations. Different from these training-
intensive approaches, our work explores training-free,
zero-shot VLN framework, which employing MLLMs
as core planners.

Navigation with MLLM LLMs have demon-
strated remarkable generalization and reasoning capa-



Figure 2: Illustration of the overall pipeline of the proposed methodology. We have three modules: look forward,
look now, and look backward. The agent first looks forward to decomposing the natural-language instruction
into an ordered list of sub-instructions and to extracting salient global landmarks that sketch a coarse route.
Next, it looks now by matching the current observation against the active sub-instruction, and selecting the
next waypoint for fine-grained local progress. Finally, it looks backward to audit the trajectory completed so
far—revisiting stored viewpoints, verifying that finished sub-instructions were indeed satisfied, and triggering
corrective backtracking if drift is detected.

bilities, sparking significant interest in their applica-
tion to navigation tasks. Zhou et al. (2024b) intro-
duced NavGPT, a purely LLM-based navigation agent
that performs zero-shot sequential action prediction
in VLN tasks by utilizing textual descriptions of vi-
sual observations, navigation history, and future ex-
plorable directions. Building upon this, a subsequent
work Zhou et al. (2024a) aimed to bridge the gap be-
tween LLM-based agents and VLN-specialized models
by aligning visual content within a frozen LLM and in-
corporating navigation policy networks. Navid (Zhang
et al., 2024) adapted Vicuna-based LLMs to embod-
ied navigation, while MapGPT (Chen et al., 2024) and
DiscussNav (Long et al., 2024) explored topological
textual map-guided exploration and multi-expert col-
laboration. These prior studies have largely adopted a
step-by-step navigation paradigm that leverages tex-
tual memory to maintain long-term context, but such
designs are prone to accumulated drift and may suf-
fer from inaccuracies in progress estimation. In con-
trast, our method introduces explicit global–local rea-
soning with trajectory-level verification, providing a
more structured understanding of navigation.

MLLM-Core Planner in VLN-CE Early work on
VLN assumed discrete graph navigation, but the VLN-
CE formulation of Krantz et al. (2020) exposed the far
tougher problem of planning in photorealistic contin-
uous spaces, where agents must issue velocity com-

mands while coping with long horizons, compound-
ing pose error, and partial observability. Open-Nav
(Qiao et al., 2025) addressed this by coupling con-
straint reasoning with backtracking to enhance zero-
shot robustness, while CA-Nav (Chen et al., 2025b)
cast zero-shot VLN-CE as sequential constraint satis-
faction to ensure both language and spatial criteria are
met. More recently, SmartWay (Shi et al., 2025) inte-
grated waypoint prediction with trajectory-level con-
sistency checks. Different from these approaches, our
framework not only enables MLLMs to conduct se-
mantic analysis of the current environment for local
navigation among candidate directions, but also equips
them with meta-abilities to support higher-level deci-
sion making and a deeper understanding of the navi-
gation process.

3 Method

3.1 Problem Formulation

Vision-and-Language Navigation in Continuous En-
vironments (VLN-CE) is defined by an autonomous
agent navigating within a continuous 3D environment
E to reach a specified goal location based on natural
language instructions. Let xt denote the agent’s pose
(position and orientation) at time t. At each time step,
the agent receives an observation ot ∈ O consisting of
a panoramic RGB-D view from its current pose (e.g.,



Figure 3: One successful example in the R2R-CE dataset. (a) Look now. Display the current candidate viewpoints
and their short descriptions; the MLLM selects the option most aligned with the active sub-goal sk as the next
direction v⋆t . (b) Look backward. Visualize all previously chosen viewpoints to form the executed trajectory τ ;
the MLLM audits τ against the finished sub-instructions to decide whether the completed sub-goals is satisfied.
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panorama). The agent is also given a natural language
instruction W = (w1, w2, . . . , wL), where each wi is a
word token and L is the instruction length, describing
the instructions to reach the goal for the agent. The
action space A comprises discrete low-level navigation
actions (e.g., turning or moving forward by fixed incre-
ments) that change the agent’s pose. Starting from an
initial pose x0, the agent iteratively selects an action
at ∈ A based on the instruction W and current obser-
vation ot, yielding a new state xt+1 and observation
ot+1 at the next step. This perception–action loop
repeats until the agent executes a stop action upon
reaching the destination. By following the instruction
in this sequential decision process, the agent aims to
minimize navigation errors and to successfully arrive
at the target location in E .

3.2 Overview

As shown in Fig. 2, our methodology consists of a
lightweight three-view planner, dubbed Three-Step
Nav, that augments any frozen multimodal LLM
through prompt engineering. Previous Local Chain-
of-Thought (CoT) approaches, which make decisions
solely based on the current observation, are limited
to reasoning over candidate viewpoints and a tex-

tual history memory. As a result, they are prone
to drifting or becoming distracted over long trajec-
tories. To address this issue, we introduce a Hierar-
chical Global–Local Planner that organizes nav-
igation into three complementary stages: look for-
ward, look now, and look backward. In the look for-
ward stage, the instruction is decomposed into an
ordered sequence of sub-instructions, each anchored
by salient global landmarks, which together form a
coarse-grained plan. Navigation then proceeds in a
loop over these sub-goals. For each sub-goal, the agent
repeatedly performs look now, selecting from candi-
date viewpoints the option most aligned with the cur-
rent sub-instruction and its associated landmark. This
local decision-making is guided by the MLLM navi-
gator, which also checks whether the agent has ap-
proached the target landmark closely enough to con-
sider the sub-goal completed. Once a sub-goal is tenta-
tively reached, the agent executes look backward, au-
diting its past trajectory by replaying visited view-
points and verifying that completed sub-instructions
and landmarks were indeed satisfied from a global per-
spective. Only if the MLLM navigator confirms con-
sistency with the history does the planner advance to
the next sub-goal; otherwise, it triggers backtracking
or refinement. This hierarchical global–local struc-
ture enables the agent to maintain long-horizon co-
herence while still making fine-grained, adaptive local



decisions, effectively reducing premature stops and ac-
cumulated drift in zero-shot navigation. The methods
are summarized in sections 3.3, 3.4, and 3.5 below.

3.3 Look forward

The looking-forward module converts the full natural-
language instructions into an ordered “road-map” of
sub-instructions and coarse global waypoints before
any physical movement begins. Prompted with the in-
struction text and the agent’s initial panoramic view,
the frozen multimodal LLM (i) segments the instruc-
tion wherever spatial connectives (e.g., “past,” “be-
tween,” “until”) or punctuation mark distinct goals,
producing a sequence of atomic sub-instructions, and
(ii) highlights the salient nouns that refer to persistent
landmarks—rooms, furniture, or objects—that can an-
chor long-range navigation. Each sub-instruction is
then paired with its corresponding landmark, yield-
ing a high-level plan that sketches a straight-line route
through the environment. Because this step is purely
prompt-based and training-free, it can be injected into
any VLN pipeline with negligible overhead while pro-
viding the global context that subsequent modules ex-
ploit for local decision making and drift correction.

3.4 Look now

The looking-now module (Fig. 3 (a)) is the agent’s
fine-grained decision engine at each time step. Given
the current sub-instruction sk (provided by the look-
forward module) and the agent’s observation ot at pose
xt, the agent must decide where to move next. We
first enumerate a set of navigable candidate viewpoints
Vt = vt,1, vt,2, . . . , vt,m reachable from xt (e.g. adja-
cent viewpoints returned by the simulator). Followed
by prior work (Qiao et al., 2025), we use a transformer-
based model to serve as the Waypoint Prediction mod-
ule and take panoramic RGB and depth images to pin-
point potential navigation waypoints. For each candi-
date vt,i ∈ Vt generated by the Waypoint Predictor,
we select a viewpoint image of the view in that di-
rection and the corresponding description. Aligning
the active sub-instruction with the present visual ob-
servation of the potential navigation waypoints, and
select a fine-grained waypoint for local progress. We
then prompt the multimodal language model with a
query that includes (i) the active sub-instruction sk,
(ii) a short description of the candidate viewpoints and
the images (iii) the textual description for the his-
tory movement. The prompt asks MLLM to judge
which viewpoint viewpoint will meaningfully advance
the sub-goal described by sk. The agent then selects
the top-scoring direction vt as the next waypoint to
pursue. The low-level motion command correspond-
ing to vt is executed, causing the agent to navigate

from xt to the new location xt+1 and yielding a new
observation ot+1. In addition, the MLLM is required
to output an estimated distance dt to the landmarks
mentioned in sk; if dt falls below a predefined thresh-
old, the current sub-goal is considered ready to be in-
spected.

3.5 Look backward

As shown in Fig. 3 (b), the look backward module
provides trajectory-level verification to catch cumula-
tive drift before the agent terminates. After each sub-
instruction—or whenever the agent believes the goal
is reached—it assembles a compact textual replay of
the visited viewpoints: a chronologically ordered list
of landmark names, object mentions, and distances
traveled. This replay, together with the finished sub-
instructions, is fed back to the frozen MLLM with a
prompt inspect two questions: (i) whether the current
trajectory satisfies each sub-instruction in order and
(ii) whether any overlooked landmark or missed turn
suggests a correction. After generate the answer about
these questions, the agent should invoke invoke one of
four meta-abilities:

continue. If the distances and audit confirm the cur-
rent sub-goal is satisfied, advance to sk+1.

stay. If signals are borderline or uncertain, remain
at xt and re-query the MLLM without changing the
trajectory.

backtrack. If the audit fails, roll back to the last reli-
able waypoint xr and truncate the trajectory τ←τ0:r.

look-around. If uncertainty is high, temporarily visit
all candidate neighbor viewpoints v∈N (xt) to collect
observations from these neighbor nodes, then return
to xt for re-evaluation.

By closing this audit loop at runtime—without
gradient updates or environment-specific heuris-
tics—looking backward markedly reduces premature
stops and large navigation errors, ensuring that global
intent aligns with the final executed route.

4 Experiments

4.1 Experiment Setup

Dataset We conduct our framework on two stan-
dard benchmarks for vision-and-language navigation
in continuous environments: (Ku et al., 2020) and
RxR-CE (Krantz et al., 2020). R2R-CE extends the
Room-to-Room dataset (Anderson et al., 2018) to con-
tinuous settings based on the Habitat simulator (Savva
et al., 2019). Compared to R2R-CE, RxR-CE intro-
duces longer instructions, longer paths, stricter physi-



Table 1: Comparison with supervised and zero-shot methods on validation unseen split of R2R-CE. Bold
denotes the best performance across all zero-shot methods, while Underlined indicates the second-best results
across zero-shot methods.

Method TL NE↓ nDTW↑ OSR↑ SR↑ SPL↑
Supervised Learning

CMA (Hong et al., 2022) 11.08 6.92 50.77 45 37 32.17
RecBERT (Hong et al., 2022) 11.06 5.80 54.81 57 48 43.22
BEVBert (An et al., 2023) 13.63 5.13 61.40 64 60 53.41
Navid (Zhang et al., 2024) 7.63 5.47 – 49 37 35.90
ETPNav (An et al., 2024) 11.08 5.15 61.15 58 52 52.18

Zero-Shot
Random 8.15 8.63 34.08 12 2 1.50
LXMERT (Hong et al., 2022) 15.79 10.48 18.73 22 2 1.87
DiscussNav (Long et al., 2024) 6.27 7.77 42.87 15 11 10.51
MapGPT-CE (Chen et al., 2024) 12.63 8.16 – 21 7 5.04
NavGPT-CE (Zhou et al., 2024b) – 8.37 – 27 16 10.20
Open-Nav (Qiao et al., 2025) 7.68 6.70 45.79 23 19 16.10
AO-Planner (Chen et al., 2025a) – 6.95 – 38 25 16.60
CA-Nav (Chen et al., 2025b) – 7.58 – 48 25 10.80
SmartWay (Shi et al., 2025) 13.09 7.01 – 51 29 22.46
Ours 9.18 5.87 57.70 39 34 29.12

Table 2: Comparison with supervised and zero-shot
methods on validation unseen split of RxR-CE.

Method NE↓ nDTW↑ SR↑ SPL↑
Supervised Learning

Seq2Seq Krantz et al. (2020) 12.10 30.8 13.9 11.9
DC-VLN Hong et al. (2022) 8.98 46.7 27.1 22.7
Navid Zhang et al. (2024) 8.41 – 23.8 21.2
ETPNav An et al. (2024) 5.64 61.9 54.8 44.9

Zero-Shot
CLIP-Nav (Dorbala et al., 2022) – – 9.8 3.2
A2Nav Chen et al. (2023) – – 16.8 6.3
AO-Planner Chen et al. (2025a) 10.75 33.1 22.4 15.1
CA-Nav Chen et al. (2025b) 10.37 13.5 19.0 6.0
Ours 9.21 45.7 22.0 16.1

cal restrictions, and greater risk of getting stuck, mak-
ing it significantly more challenging. Following the
setting in previous work (Qiao et al., 2025), we use
the same 100 selected episodes from the val-unseen
validation splits of R2R-CE, and randomly sampled
100 episodes from the English val-unseen split of RxR-
CE, to balance coverage and API efficiency. For each
episode, the agent receives a natural language in-
struction and must reach the corresponding goal in
the Habitat simulator, with the gpt-5-2025-08-07 API
serving as the core of the multimodal planner.

Evaluation Metrics We utilize the pre-defined
evaluation metrics of the VLN task. (1) Trajectory
Length (TL), the total distance traveled by the agent;
(2) Navigation Error (NE), the shortest geodesic dis-
tance between the final position and the goal; (3)

Table 3: Ablation study on the validation unseen
split of R2R-CE. We compare the full Hierarchical
Global–Local Planner with ablated variants that dis-
able global reasoning modules.

Method Step1 Step2 Step3 NE↓ nDTW↑ SR↑
Ours ✓ ✓ ✓ 5.87 57.70 34
Ours (only local view) – ✓ – 6.55 54.52 20
Ours (w/o Look Backward) ✓ ✓ – 6.22 55.85 28

Normalized Dynamic Time Warping (nDTW), tra-
jectory similarity by aligning the executed and ref-
erence paths; (4) Success Rate (SR), the percentage
of episodes where the agent stops within 3 meters of
the goal; (5) Object Success Rate (OSR), Success rate
of reaching the goal along the trajectory; (6) Success
weighted by Path Length (SPL), weighting successful
trajectories according to the ratio of the shortest-path
distance to the actual path length.

4.2 Experimental Results

Table 1 shows a comprehensive performance compari-
son of both supervised learning and zero-shot meth-
ods on the val-unseen split of R2R-CE. Supervised
models, trained with extensive domain-specific data,
naturally obtain higher success rates (up to 52–60%)
and maintain strong results across all metrics, high-
lighting the advantage of task-tailored learning in con-
trolled settings. In contrast, zero-shot agents are de-
ployed without task-specific fine-tuning and generally
achieve lower SPL and SR, reflecting the inherent diffi-



Table 4: Comparison of different multimodal LLM ex-
perts on the validation unseen split of R2R-CE. We
report results using our full Hierarchical Global–Local
Planner.

MLLM Expert NE↓ nDTW↑ SR↑
GPT-5 5.87 57.70 34
GPT-4o 6.70 56.42 28
GPT-4v 6.94 54.10 26

culty of transferring general reasoning abilities to em-
bodied navigation. Within this challenging zero-shot
regime, our Three-Step Nav achieves the best overall
performance, reaching an SR of 34%, an NE of 5.87,
and an SPL of 29.12%. Compared with the strongest
prior zero-shot SOTA methods, this corresponds to
an improvement of 5% in SR and 6.66% in SPL,
meanwhile we gain a relatively reduction of 12.4%
in NE. These improvements indicate that our Hierar-
chical Global-Local Planner framework enables more
decision-making and avoids unnecessary navigation er-
ror, resulting in stronger goal-reaching capability and
trajectory efficiency. Overall, the results demonstrate
that incorporating structured global–local reasoning
into an MLLM-based planner significantly boosts zero-
shot performance and narrows the gap with fully su-
pervised navigation systems.

Table 2 reports the results on the RxR-CE dataset.
Supervised approaches such as ETPNav, which are
trained with extensive task-specific data, achieve
strong performance (e.g., SR of 54.8% and SPL of
44.9), but require large-scale supervision that limits
generalizability. In contrast, zero-shot models operate
without fine-tuning and generally lag behind in SPL
and SR. Within this challenging regime, our Three-
Step Nav achieves competitive results, with an NE of
9.21, an nDTW of 45.7, an SR of 22.0, and an SPL of
16.1. Compared with the strongest zero-shot baselines,
our method improves nDTW by 12.6%, and relatively
reduces NE by 11.2%. These results highlight that the
integration of global–local reasoning and trajectory-
level auditing enables robust progress estimation in
long-horizon navigation, even under the more demand-
ing RxR-CE benchmark.

4.3 Ablation Study

Table 3 reports the ablation results on R2R-CE, high-
lighting the contributions of different modules in our
hierarchical design. The full model with all three
steps enabled achieves the strongest performance (NE
5.87, nDTW 57.70, SR 34%). When only the local
reasoning module (look now) is active, performance
drops substantially (SR 20%, NE 6.55), showing that
local chain-of-thought reasoning alone cannot main-

tain long-range consistency. Enabling global forward
planning but removing the backward verification im-
proves results to SR 28% and nDTW 55.85, yet still
lags behind the full framework. These comparisons
demonstrate that both global planning (look forward)
and trajectory-level auditing (look backward) are in-
dispensable: the forward step provides high-level guid-
ance, while the backward check prevents drift and pre-
mature stops. Together, they enable our Three-Step
Nav to achieve robust zero-shot navigation beyond
local-only baselines.

To further understand the role of the underlying
MLLM expert, Table 4 compares GPT-5, GPT-4o,
and GPT-4V within our full Three-Step Nav frame-
work. Among the three tested models, GPT-5 deliv-
ers the strongest results (NE 5.87, nDTW 57.70, SR
34%), demonstrating its superior capability for long-
horizon spatial reasoning. Using GPT-4o still pro-
vides competitive performance, but with a noticeable
drop in SR (28%) and slightly higher navigation error
(NE 6.70), while GPT-4v lags further behind with SR
26% and NE 6.94. These comparisons suggest that
although our planner consistently benefits from struc-
tured global–local reasoning regardless of the under-
lying expert, more advanced MLLMs such as GPT-5
yield significant gains in both success rate and trajec-
tory fidelity. This highlights the importance of model
quality when scaling zero-shot navigation frameworks
to more complex environments.

5 Conclusions

Summary In this work, we introduced Three-Step
Nav, a hierarchical global–local planner that enables
zero-shot VLN in continuous environments without
any task-specific training. Our three-stage approach
– look forward, look now, and look backward – allows
a frozen multimodal LLM to maintain long-horizon
context, make fine-grained decisions, and self-correct
by backtracking. This framework is lightweight and
modular, easily integrating into existing navigation
pipelines. Three-Step Nav set a new state-of-the-
art among zero-shot methods on R2R-CE, reducing
navigation error by about 15% and substantially im-
proving success rate and path efficiency (SPL) com-
pared to previous approaches. It also achieved strong
performance on the challenging RxR-CE benchmark,
demonstrating competitive results close to fully su-
pervised policies. These gains validate that coupling
global route planning with trajectory-level verification
can significantly mitigate distraction and drift in long-
horizon navigation.

Method Assumptions and Limitations While
effective, our approach assumes access to a powerful



multimodal language model and a relatively static en-
vironment. The agent’s reasoning heavily relies on
the pre-trained LLM (e.g. GPT-5), which introduces
computational cost and potential errors if the model
misinterprets visual cues or instructions. Also, our
evaluations are in simulated indoor environments –
transferring to real robots will require handling sensor
noise, moving obstacles, and other real-world complex-
ities. The Three-Step Nav framework does not learn
from feedback over time, so extremely long or ambigu-
ous instructions can still pose challenges. In future
work, we plan to refine the system’s robustness by in-
corporating learning-based adaptation or fine-tuning
smaller navigation-specific models. Additionally, op-
timizing the prompting strategy and LLM integration
could reduce latency, making the system more feasible
for real-time robotic deployment. Validating our plan-
ner on physical robots in real homes or public spaces is
an important next step toward closing the sim-to-real
gap.

Societal Impact Improving Vision-and-Language
Navigation has positive implications for assistive
robotics and autonomous agents in society. A ro-
bust zero-shot navigation agent could assist visually
impaired users in unfamiliar indoor spaces or enable
home robots to follow complex spoken instructions, en-
hancing accessibility and convenience. Our method’s
ability to self-audit and correct mistakes is particularly
valuable for safety-critical applications like search-and-
rescue, where backtracking from a wrong turn can pre-
vent accidents. We are mindful that any autonomous
navigation system must be thoroughly tested to avoid
hazards – for instance, a navigation error in a real
home could lead to collisions. By reducing drift and
improving reliability, Three-Step Nav contributes to
safer deployment of embodied AI. Continued research
should examine ethical considerations (such as mini-
mizing biases in language understanding) and include
stakeholders in testing to ensure these systems benefit
users of diverse backgrounds. Overall, our hierarchical
planner represents a step toward more trustworthy and
general-purpose embodied agents, bridging the gap be-
tween simulation benchmarks and real-world naviga-
tion tasks.
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