Implementation Details

1 Look Forward Module

The look forward module serves as a global parser for the navigation instruction. It takes the entire instruction
as input and decomposes it into a sequence of atomic actions, ensuring that all actions and landmark descriptions
are captured. Each sub-instruction produced by the module must contain at least one action (such as “go through
the door” or “turn left”), and, when mentioned, it must also include specific landmarks that ground the action
in the environment. This global view prevents the omission of actions and ensures the integrity of the instruction
decomposition.

As illustrated in Figure 1, the system first provides an internal system prompt describing how to decompose the
input instruction: sub-instructions should be complete sentences, each covering a single action and any referenced
landmarks. The user prompt supplies a navigation instruction, for example: “Go through the door and turn
left. Go to the left of the stairs. Stop in the doorway to the left of the white double doors.” The module then
outputs a list of sub-instructions paired with their corresponding landmarks. These sub-instructions ensure that
each action is explicit and that any environmental details are retained. A typical output contains approximately
three to eight sub-instructions, depending on the complexity of the original instruction, providing a structured
and human-readable sequence for downstream processing.

Step 1: Look Forward (Global View)

System Prompt: You are an action decomposition expert. Your task is to decompose the whole instruction into a series of sub-instructions and
all actions in the given navigation instruction. You need to ensure the integrity of each action. You need to make sure the sub-instructions are
complete, and include the details of the current environment if it is mentioned in the instruction. Your answer must consist ONLY of a series of
labeled action phrases without begin sentence. For each sub-instruction, it should involve at least one action, and all the description of the
environment related to the same location. A typical answer should involve 3 to 8 sub-instructions.

User Prompt: Can you decompose actions in the instruction "Go through the door and turn left. Go to the left of the stairs. Stop in the doorway
to the left of the white double doors. "?

Decomposed Sub-Instructions with Corresponding Landmarks

1. Go through the door. | ['the door’]

2. Turn left. | ['There are no landmarks in the instruction "2. Turn left.”’]

3. Go to the left of the stairs. | ['the stairs’]

4. Stop in the doorway to the left of the white double doors. | ['doorway to the left of the white double doors', 'white double doors']

Figure 1: We designed the sub-instruction separation prompts for the look forward module.

2 Look Now Module

The look now module provides a fine-grained, step-wise navigation process conditioned on the current visual
observation. At each step, the system integrates the parsed sub-instruction from the look forward stage with the
accumulated navigation history and the scene observations around the agent. It constructs a detailed system
prompt that enumerates the visible candidate viewpoints, their semantic and geometric properties, and the
agent’s current spatial context. The multimodal large language model (MLLM) is then prompted to reason about
which direction best aligns with the current sub-instruction, producing a structured output that contains: (1)
a chain-of-thought justification (“Thought”), (2) the estimated distance toward the predicted direction, (3) the
predicted next viewpoint, and (4) a binary completion estimation indicating whether the current sub-instruction
is complete.

As illustrated in Figure 2, the MLLM compares candidate viewpoints by analyzing spatial cues (e.g., door
positions, hallway direction) and aligns them with linguistic landmarks in the instruction. In this example, the

model determines that the next action “turn left” should follow after moving through the door. It selects the
viewpoint corresponding to the open hallway (Direction 1) as the most consistent continuation and estimates
that the local goal is reached.

Step 2: Look Now (Local View)

System Prompt Content

[Task Background]

You are an embodied robot that navigates in the real world. You need to explore between some places marked with IDs and ultimately find the
destination to stop.

[Input Definitions]

1 will give you one instruction and tell you landmarks. | will also give you navigation history for reference. You can observe

current environment by scene descriptions, scene objects and possible existing landmarks in different directions around you.

Each direction contains direction viewpoint ids you can move to. Your task is to predict moving to which direction viewpoint.

Each direction viewpoint has an image that you can see.

[Output Requirements]

If you can already see the destination, estimate the distance between you and it. If the distance is far, continue moving and try to stop within 1
meter of the destination. Your answer includes four parts: "Thought", "Distance", "Prediction" and "Completion Estimation". In the "Thought",
you should think as detailed as possible following procedures: ... Then, please make decision on the next viewpoint in the "Prediction". Your
decision is very important, must make it very carefully. You need to double check the output in "Prediction:". The output must be in the Candidate
Viewpoint IDs without any other words. You also need to double check the output in "Thought". The output must be a single paragraph. After
finished all the above steps, you need to estimate the completion of the instruction based on the 'Instruction’, ‘Next instruction’, '‘Landmarks’,
your past 'Navigation History', 'Current Environment', and the provided images. Please think carefully about the 'Distance' when you estimate the
completion of the instruction. If your current distance to the destination is very far, you should answer 'No'. If your current distance to the

(]

destination is close and you think you are ready to walk towards the landmarks of next instruction, you should answer 'Yes'.

User Prompt Content
Instruction: 1. Go through the door. Landmarks: [‘the door’] Next instruction: 2. Turn left.
Navigation History: Step 1 Observation: Direction Font Left, range(left 15 to left 45) Modern white bathroom: from nearest to farthest—toilet (0.8
m), bathtub (1.2 m), door (2.5 m), window (3.5 m), shower (4.5 m); also includes a sink, floor, and a wall lamp. Thought: Moved straight from the
bathroom toward and through the open doorway, exiting into the brighter hallway with a railing, taking the most direct path and bypassing the tub
and side wall.
Current Environment: [‘Direction 1 Direction Viewpoint ID’ 1 in Step ID 2: Elevation: Eye Level, Scene Description: The image contains a door, a
shower, a wall, and a ceiling. The door is in the foreground, the shower is to the right, and the wall and ceiling are in the background. The door is
approximately 1 meter from the camera, the shower is about 2 meters from the camera, and the wall and ceiling are further away, likely around 5
meters. Scene Objects: bath | bathroom | bathroom accessory | doorway | floor | glass door | lead to | restroom | room | screen door | shower | sink
| slide | tile wall | tub | walk; *, ...]
Candidate Viewpoint IDs List: [1, 2, 7, 10]

ES

VP1 VP2 VP7 VP10

MLLM Response Content

Thought: The instruction is to go through the door, and the next step will be to turn left in the hall. Comparing directions, 1 and 2 both show the
open doorway leading to the bright hall with a railing, but Direction 1 places the door closest (about 1 m) and directly ahead, while Directions 7
and 10 look further into the bathroom. To follow the plan from the history and exit toward the hall efficiently, | should move toward Direction 1 to
pass through the door.

Distance: ~1 m to the doorway/hall. Prediction: 1 Completion Estimation: Yes

Figure 2: Task prompts for the local-level look now module.

3 Look Backward Module

When the progress estimation result from look now module shows ’yes’, ThreeStep Nav will start the look backward
module. As illustrated in Figure 3, the look backward module acts as a global auditing mechanism that evaluates
whether the executed actions have satisfied the current sub-instruction and determines how to transition to the
next one. While the look forward and look now modules operate on linguistic parsing and local visual reasoning,
respectively, the look backward stage explicitly integrates code-level semantics and navigation control logic. The
model is prompted with both the high-level navigation history and the code implementation snippets that define
meta-navigation behaviors, such as Continue, Stay, Look-Around, and Backtrack. By understanding the effects

and intended purposes of these functions, the system can reason about which control operation best fits the
current context.

Step 3: Look Backward (Global View)

System Prompt Content

You are a code-aware navigation decision agent that understands implementation details of four different meta navigation abilities.
User Prompt Content

[Navigation abilities]

CONTINUE Implementation: BACKTRACK Implementation:
@staticmethod @staticmethod
def stay_with_current_instruction(context: Dict[str, Any]) -> Dict[str, Any]: def backtrack_to_previous(context: Dict[str, Any], env_actions_history:
" List) -> Dict[str, Any]:
Continue working on the current sub-instruction. import math
Implementation: iflen(env_actions_history) > 0:
1. Maintain current_action_idx last_action = env_actions_history.pop()
2. Preserve navigation history # Create reverse action
3. Continue accumulating visual evidence reverse_action = {
4. Update confidence metrics ‘action’: {
Retums: ‘action: 4, # Move action
Context with updated confidence but same instruction ‘action_args’: {
" 'angle”: (last_action['action'[['action_args']['angle’] + math.pi) % (2
context['attempts_on_current’] = context.get(‘attempts_on_current', 0) + 1 * math.pi) - math.pi,
context['state’] = 'navigating' 'distance': last_action['action']['action_args']['distance]
return context n
Update context
Capability: Continue to Next Instruction. it En e B IR, 1) >0
N . context['nav_history'].pop()
Purpose: Progress to the next sub-instruction when if len(context.get(chosen_images', [I)) > 0:
currentis completed. context[chosen_images'].pop()

context['backtrack_action’] = reverse_action

Effects: Increments action index, Resets navigation context[’state’] = 'backtracking'
history, Clears visual memory, Starts fresh for new return context
sub-goal
When to use: When current landmarks have Capability: Backtrack to Previous Position
been found and instruction is satisfied. Purpose: Undo last movement and return to previous
position
Effects: ...

When to use: ...

STAY Implementation: ...
LOOK-AROUND Implementation: ...

[Input Definitions]

Given this understanding of what each action actually does in the code and considering the current context:
Finished Instructions: 1. Go through the door.

History: Step 1 Observation: ... -> Step 2 Observation: ...

Image sequence descriptions:

Image 0: Initial position: Agent standing at start point looking forward

Image 1: Step 1: Agent at previous position looking front-left (30°) towards chosen next viewpoint

Image 2: Step 2: Agent at previous position looking forward towards chosen next viewpoint

Start point

[Output Requirements]

What is the most appropriate navigation decision? Consider the actual code effects, not just the conceptual purpose. Match your
situation to the examples above.

Format your response as:

Reasoning: [Your detailed reasoning]

Confidence: [0-10]

Decision: [Continue/Stay/Backtrack/Look Around]

MLLM Response Content

Reasoning: The sub-instruction is “Go through the door.” The door landmark has been located and traversed—history notes passing through the
open bathroom door into the brighter hallway with a railing, and the latest view indicates the doorway now leading back into the bathroom. Since
the current instruction is satisfied, the correct coded action is CONTINUE to advance to the next sub-instruction, accepting its effects (increment
index and reset history/memory).

Confidence: 9

Decision: Continue

Figure 3: An example of the complete prompting process in the look backward module. The system integrates
both visual and code-level contexts to decide how to proceed after executing a sub-instruction. The prompt in-
cludes code definitions for four meta-navigation abilities—Continue, Stay, Look-Around, and Backtrack—together
with sequential observations of the agent’s trajectory. Here, the MLLM reasons that the sub-instruction “go
through the door” has been fulfilled and correctly selects Continue, indicating readiness to progress to the next
navigation goal.

